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Abstract
Introduction: Difficulty swallowing (dysphagia) occurs fre-
quently in patients with neurological disorders and can lead 
to aspiration, choking, and malnutrition. Dysphagia is typi-
cally diagnosed using costly, invasive imaging procedures 
or subjective, qualitative bedside examinations. Wearable 
sensors are a promising alternative to noninvasively and ob-
jectively measure physiological signals relevant to swallow-
ing. An ongoing challenge with this approach is consolidat-
ing these complex signals into sensitive, clinically meaning-
ful metrics of swallowing performance. To address this gap, 
we propose 2 novel, digital monitoring tools to evaluate 
swallows using wearable sensor data and machine learning. 

Methods: Biometric swallowing and respiration signals 
from wearable, mechano-acoustic sensors were compared 
between patients with poststroke dysphagia and nondys-
phagic controls while swallowing foods and liquids of differ-
ent consistencies, in accordance with the Mann Assessment 
of Swallowing Ability (MASA). Two machine learning ap-
proaches were developed to (1) classify the severity of im-
pairment for each swallow, with model confidence ratings 
for transparent clinical decision support, and (2) compute a 
similarity measure of each swallow to nondysphagic perfor-
mance. Task-specific models were trained using swallow ki-
nematics and respiratory features from 505 swallows (321 
from patients and 184 from controls). Results: These models 
provide sensitive metrics to gauge impairment on a per-
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swallow basis. Both approaches demonstrate intrasubject 
swallow variability and patient-specific changes which were 
not captured by the MASA alone. Sensor measures encod-
ing respiratory-swallow coordination were important fea-
tures relating to dysphagia presence and severity. Puree 
swallows exhibited greater differences from controls than 
saliva swallows or liquid sips (p < 0.037). Discussion: Devel-
oping interpretable tools is critical to optimize the clinical 
utility of novel, sensor-based measurement techniques. The 
proof-of-concept models proposed here provide concrete, 
communicable evidence to track dysphagia recovery over 
time. With refined training schemes and real-world valida-
tion, these tools can be deployed to automatically measure 
and monitor swallowing in the clinic and community for pa-
tients across the impairment spectrum.

© 2021 The Author(s)
Published by S. Karger AG, Basel

Introduction

Swallowing is a complex process, requiring intricate 
coordination of nerves and muscles to move a substance 
(bolus) from the mouth to the stomach. Dysphagia, or 
difficulty swallowing, occurs when this process is com-
promised, such as from muscle weakness or damage to 
the nervous system (e.g., from a stroke), and affects ap-
proximately 1 in 25 adults annually in the USA [1]. The 
consequences of impaired swallowing can be dire, with 
significant risk of health complications and even death 
[2]. Patients typically experience overt symptoms of im-
paired swallowing such as coughing, choking, and regur-
gitation. Reduced ability or desire to swallow may lead to 
malnourishment, dehydration, or inability to take oral 
medication. Symptoms of impaired swallowing are not 
always evident; for example, silent aspiration occurs when 
a bolus enters the airway without triggering observable 
symptoms and may affect 2–25% of acute stroke patients 
[3]. Coordination with respiratory processes is essential 
to protect the airway while swallowing [4, 5], and these 
dynamics have been known to change with age and dis-
ease [6–8].

Given the prevalence and profound impact of im-
paired swallowing, early detection of dysphagia is critical 
to design appropriate care plans and improve patient out-
comes. Current techniques include imaging procedures, 
which are invasive and costly, and bedside examinations, 
which rely on subjective clinician observations. Although 
generally effective for identifying impaired swallowing, 
these techniques are only performed intermittently in the 
clinic, are not administered for every patient, and may not 

be sensitive to detect milder symptoms. Furthermore, 
many procedures lack sensitivity because they assign a 
single score or rating to a patient’s overall swallowing 
ability; however, patients might have some swallows that 
are functional and safe and others that are not because 
swallowing is inherently variable [9, 10] and affected by 
bolus characteristics [11], attention [12], and posture 
[13]. Alternative tools are needed to capture this intrap-
ersonal swallowing variability, improve risk assessment 
by gauging each swallow independently, and characterize 
subtle functional changes over time.

Wearable sensors have been proposed as a noninvasive 
means of obtaining continuous, precise, and objective 
measures of swallowing. Early results are promising to 
discriminate underlying biomarkers of impairment [14–
17]. However, advocates consistently identify the need to 
translate these methods into clinical practice without pro-
viding user-friendly tools to do so. Additionally, few stud-
ies have simultaneously captured respiration during swal-
lowing using wireless sensing platforms. To address these 
gaps, we introduce 2 machine learning approaches to 
translate complex sensor data – namely, biometric signals 
of swallowing and respiratory dynamics – into novel, mul-
tidimensional metrics that evaluate individual swallows 
and quantify deviations from healthy behaviors. This 
proof-of-concept study aims to demonstrate the method-
ological feasibility of developing sensitive metrics and in-
terpretable visual tools to quantify swallowing behaviors 
from wearable sensors using machine learning techniques. 
Subsequently, this framework can be leveraged with ad-
ditional training data to further develop optimized, vali-
dated models for the detection and monitoring of dyspha-
gia. Recognizing the frequency and severity of poor swal-
lows outside of a standard clinical evaluation would 
improve our understanding of real-world swallowing be-
haviors, which in turn may facilitate intervention and da-
ta-driven treatment to optimize health outcomes.

Methods

Participants
Individuals with poststroke dysphagia were recruited from the 

acute inpatient rehabilitation unit at the Shirley Ryan AbilityLab 
(Chicago, IL, USA). All individuals provided written informed 
consent prior to participation. Inclusion criteria were a stroke re-
sulting in dysphagia, at least 18 years of age, and able and willing 
to give consent and follow study procedures. Exclusion criteria 
were diagnosis of neurodegenerative pathology as a comorbidity; 
pregnant or nursing; or presence of skin allergies, irritation, or 
open wounds. Medical clearance was obtained from each patient’s 
primary physician prior to participation.
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Twelve patients with dysphagia were recruited in this proof-of-
concept study; 3 patients were excluded from analysis because of 
limited data availability (due to software error) or a change in med-
ical status (which prevented continued participation). All patients 
were diagnosed as dysphagic in their medical records following 
standard hospital intake evaluation. Demographics and medical 
characteristics of the final patient cohort (N = 9; 5M/4F; 59.4 ± 11.3 
years) are given in online suppl. Table 1 (for all online suppl. mate-
rial, see www.karger.com/doi/10.1159/000517144). Individuals 
with no known health problems or history of stroke were recruited 
as controls from a sample of convenience (N = 10; 3M/7F; 28.5 ± 
6.1 years).

Devices
Two flexible, wireless, research-grade mechano-acoustic sen-

sors [18] were used to record kinematics of swallowing and respi-
ration (Fig. 1), sampling triaxial acceleration (±2 g) at 1,600 Hz 
from the z-axis (anteroposterior plane) and 200 Hz from the x- and 
y-axes. One sensor was placed on the throat (suprasternal notch) 
to capture the laryngeal motion accompanying swallowing [18, 
19]. The second sensor was placed on the ribcage (midaxillary at 
the level of the xiphoid process; on the unaffected side for patients 

with stroke or on the dominant side for controls) to capture breath-
ing patterns relative to swallow events. Sensors were adhered to the 
skin using medical dressing (Tegaderm; 3 M).

The sensors were time synchronized and connected to an iOS 
smartphone via Bluetooth for local data labeling and management. 
Swallowing events were timestamped using a custom app. Sensor 
data and events were downloaded to a HIPAA-compliant server 
for offline analysis.

Protocol
Swallowing assessments were administered and scored by a 

trained speech-language pathologist. While wearing the sensors, 
participants first sat quietly for 30 s to capture baseline respiration. 
They then performed a series of orofacial movements and swallow-
ing tasks, including natural or effortful swallows of saliva, as well 
as liquids and foods of different consistencies and presentations 
(Table 1). Only tasks that adhered to patients’ prescribed dyspha-
gia diets were attempted. Each task was performed at least twice to 
capture within-subject swallow variability.

Patients participated in 2 sessions: within 1 week of admission 
(Adm) and within 1 week before discharge (Dis) from the inpatient 
rehabilitation program. At each session, dysphagia severity was 
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Fig. 1. Setup of mechano-acoustic sensors to capture swallowing 
and respiration. a Sensors recording triaxial acceleration were 
placed on the throat (suprasternal notch) and ribcage (midaxillary 
at the level of the xiphoid process; unaffected side for patients with 
hemiplegia and dominant side for controls) to record laryngeal 
swallow response and respiratory movement patterns, respective-
ly. Orientation of x, y, and z sensor axes is shown relative to ana-

tomical planes (S-I, superior-inferior; M-L, medial-lateral; A-P, 
anterior-posterior). b The sensor is a wireless, flexible device that 
communicates with a custom app via Bluetooth. c Raw triaxial ac-
celerometer recording example from the throat sensor during a 
liquid bolus swallow (left) and from the ribcage sensor during qui-
et sitting (right).
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rated using the Mann Assessment of Swallowing Ability (MASA) 
[20], a widely acknowledged and validated bedside tool [21] (on-
line suppl. Table 1). Healthy individuals performed the same pro-
tocol in a single session, serving as a nondysphagic control group.

Data Processing and Feature Extraction
The data pipeline is illustrated in online suppl. Fig. 1. Sensor 

data were cleaned, filtered, and clipped around each identified 
swallow. Trials containing competing peaks near the swallow 
event or excessively noisy signals were discarded to ensure models 
were trained using sensor data confidently attributable to swallow-
ing. To mitigate inter- and intrasubject variability due to variations 
in sensor placement [22], each subject’s sensor data were normal-
ized by a within-session task.

Thirty-six features were extracted from the normalized throat 
and ribcage sensor signals during each swallow, including descrip-
tive statistics, time and frequency domain measures, and respira-
tory-swallow coordination parameters (e.g., apnea duration and 
swallow timing during inhale-exhale cycles). Correlation-based 
feature selection was implemented to reduce model complexity 
and remove redundant variables (Pearson correlation coefficient p 
≥ 0.6). From this set, 17 features were selected for supervised learn-
ing (online suppl. Tables 2, 3).

Model Development
We used dysphagia severity classifications, operationally de-

fined by the MASA, as an example ground truth for model training. 
Models were implemented using Python scikit-learn 0.23.1 [23].

The first model, named the Severity Probability Model, was de-
signed to provide transparent, multifaceted evaluation of swallow-
ing behavior. This approach estimates the presence and severity of 
impairment for each swallow and computes the probability that the 
swallow belongs to each possible severity class. A Random Forest 
classifier was trained on sensor features using a leave-1-subject-out 
nested cross-validation to tune hyperparameters (number of trees, 
maximum depth, and maximum number of leaf nodes). Separate 
models were trained for different bolus types, since bolus charac-
teristics can differentially affect swallowing [10, 11]. Online suppl. 
Table 4 shows representative hyperparameter values for each task, 

tuned on all patient data to provide a sense of the optimization out-
put. To evaluate model predictions as a function of ground truth 
severity, we used a general linear model to compare the output 
probabilities across MASA groups for each predicted severity class.

The second model, named the Distance Model, evaluates indi-
vidual swallow impairment by representing sensor data as a mea-
surable “distance” from healthy swallowing behavior. This ap-
proach simplifies multidimensional sensor features into a single 
metric to track swallowing performance over time. Patients who 
completed both the Admission and Discharge sessions (N = 7) 
were tested by iteratively holding out each patient’s data and train-
ing on the controls and remaining patient data. We applied linear 
discriminant analysis to represent each swallow in a standardized, 
2-dimensional subspace, clustered by dysphagia severity. A single-
class support vector machine with a nonlinear decision boundary 
was fit to the control data. Individual swallow quality was quanti-
fied via a distance d from the boundary, with increasing distance 
values representing greater deviation from healthy swallowing. We 
examined group-level statistics of the resulting distance values us-
ing a generalized linear mixed effects model with repeated mea-
sures. Distance values for each patient were averaged across swal-
lows for a given task and session, since some patients had more 
swallows than others. We included task, session, and their interac-
tion as fixed effects and patients as a random effect.

All statistical analyses were conducted in SAS Studio 3.8 (SAS 
Institute; Cary, NC, USA), with p values <0.05 considered signifi-
cant. Post hoc tests were adjusted for multiple comparisons using 
a simulated distribution. For additional details about model devel-
opment, please refer to online suppl. Methods.

Results

After processing, 505 total swallow instances (184 con-
trols and 321 poststroke patients) were available for mod-
el development (Table 1). Swallow trials from representa-
tive patients and tasks are shown in online suppl. Fig. 2.

Table 1. Number of swallows available for model training in each task and dysphagia severity level

Task (bolus and oral presentation) Dysphagia severity

None (controls) None (patients) Mild (patients) Moderate (patients)

Saliva: natural dry swallow 12 13 7 6
Saliva: effortful dry swallow 18 14 6 5
Liquid: 2.5 mL 18 11 7 12
Liquid: 5 mL 16 12 10 8
Liquid: natural sip 27 33 17 14
Liquid: straw sip 20 8 8 4
Puree: spoonful 13 11 5 5
Puree: spoonful with effortful swallow 20 21 13 13
Soft solid: spoonful 22 12 11 8
Hard solid: natural bite 18 15 10 2

Total 184 150 94 77
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Severity Probability Model Delivers Transparent 
Severity Classification for In-Depth Swallowing 
Assessment
Figure 2 illustrates the model output for a patient with 

moderate dysphagia swallowing various boluses in a 1-h 
window. The predicted severity of each swallow is sup-
plemented with (1) severity class probabilities, (2) a vi-
sual comparison of the patient’s throat sensor signal with 
the average control signal, and (3) measures of respirato-
ry-swallow coordination. In this proof-of-concept, dys-
phagia severity classification is confined to none, mild, 

or moderate based on the MASA scores represented in 
our patient cohort. Out of 20 labeled swallows, 3 were 
classified as moderate, 7 as mild, and 10 as nondysphag-
ic. Classification probabilities varied across each swal-
low, indicating that some swallows were more confident-
ly attributable to a severity class than others. Respiratory-
swallow coordination features revealed variation in 
apnea timing and inhalation-exhalation patterns, de-
pending on the bolus and swallow trial. Previous studies 
of respiratory-swallow coordination have found that in-
hale-swallow-inhale (In-In) patterns [24, 25] and short-
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Fig. 2. Severity Probability Model to classify impairment in each 
swallow with transparent, quantifiable decision support. a Each 
swallow is assigned a severity level (e.g., none, mild, moderate, and 
severe) using a Random Forest classifier trained on MASA dyspha-
gia ratings. b Additional model predictions and sensor-based met-
rics provide comprehensive information about a swallow based on 
quantifiable metrics. Left: model predictions compute the proba-
bility of belonging to each class, thereby moderating model confi-
dence and identifying swallows that might border multiple classes. 
Middle: task-specific swallowing acceleration signals recorded 
from the throat sensor are compared to average signals from non-

dysphagic controls. Data are aligned by the time of the peak swal-
low acceleration (vertical dashed gray line), taken from the throat 
sensor signal. Right: swallow and apnea timing in the respiratory 
cycle reveals characteristics about respiratory-swallow coordina-
tion to further assess aspiration risk. Inhalation-exhalation pat-
terns (red lines; In, inhale; Ex, exhale) show the respiratory phases 
occurring immediately before and after the identified swallow ap-
nea (gray box), relative to the timing of the peak swallow accelera-
tion (vertical dashed gray line). Acceleration signals are min-max 
normalized using a standardized in-session task.
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ened or variable apnea duration [26, 27] are associated 
with aspiration risk.

For each model, feature importance varied across the 
different bolus types and oral presentation methods. Total 
power of throat acceleration and relative duration of the 
previous inhale to swallow (old phase) were the highest 
weighted features on average (online suppl. Table 5). There 
was a significant effect of MASA severity on the probabil-
ity of swallows being classified as either none (F [2,502] = 
11.5, p < 0.001) or mild (F [2,502] = 18.4, p < 0.001) (Fig. 3). 
Post hoc tests revealed that the model generally predicted 
lower probabilities for the none class and greater probabil-
ities for the mild class with increasing dysphagia severity. 
There was no effect of severity (F [2,502] = 1.35, p = 0.26) 
on probabilities of the moderate class.

Distance Model Quantifies Individual Swallows by 
Comparison with Nondysphagic Swallowing
Task-specific feature subspaces for sample dysphagic 

patients are shown in Figure 4, representing each swallow 

as a quantifiable distance from the nondysphagic control 
boundary. For example, a patient taking natural sips of 
water at Admission (mild dysphagia) and Discharge (no 
dysphagia) showed a decreased average distance from the 
boundary, from dAdm = 2.48 (0.91) to dDis = 0.43 (0.42) 
(Fig. 4a). Thus, this patient’s reduced dysphagia severity 
during rehabilitation was also reflected in the model out-
put, with sensor data that became more similar to con-
trols. For another patient (moderate dysphagia at both 
Admission and Discharge), the Distance Model revealed 
task-specific swallowing changes that were not reflected 
by the dysphagia severity alone. For 5 mL liquid bolus tri-
als at Discharge, 1 swallow was mapped to a similar dis-
tance as their Admission performance, but additional 
swallows were notably closer to the control boundary, 
with dAdm = 2.47 (0.10) and dDis = 0.64 (1.27) (Fig. 4b). 
Thus, sensor data suggest some improvement in this task 
though the MASA severity remained the same.

Across patients, there was a significant effect of task 
on the average distance per session (F [6, 54] = 3.11,  
p = 0.011). There was no significant effect of session  
(F [1, 54] = 1.65, p = 0.21) or session-task interaction  
(F [1, 54] = 0.34, p = 0.91). Post hoc tests showed that 
puree swallows had significantly greater distances than 
saliva swallows (p = 0.037) and natural sips of liquid (p = 
0.001). No other tasks showed significant differences in 
pairwise comparisons.

Discussion

In summary, this proof-of-concept demonstrates the 
feasibility of collecting simultaneous swallow-respiratory 
wearable sensor data in a clinical setting to create sensi-
tive, multidimensional metrics on swallowing behavior. 
We demonstrated that mechano-acoustic sensor data can 
capture subtle differences in individual swallows across 
bolus types and dysphagia severities. Both models can 
quantify intrasubject swallow variability, as well as pa-
tient-specific changes in performance following inpatient 
rehabilitation (even when those changes were not indi-
cated by a clinical screening tool).

Noninvasive detection of swallowing impairment has 
garnered increasing interest in recent years, likely bol-
stered by advances in sensor technology and machine 
learning techniques. A primary focus has been accelerom-
etry [15, 17, 28, 29] or audio signals (i.e., microphone) to 
classify impairment via swallowing, coughing, and other 
behaviors [19, 30–32]. Results are promising; in a recent 
prospective study of 344 individuals at risk for oropharyn-
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geal dysphagia, Steele et al. [17] trained a regularized lin-
ear discriminant analysis on dual-axis accelerometer sig-
nals and videofluoroscopy, achieving ∼90% sensitivity 
and ∼60% specificity for detecting impaired swallow safe-
ty (when material entered the airway; “penetration-aspi-
ration”) and ∼80% sensitivity and ∼60% specificity for 
detecting impaired swallow efficiency (when material re-
mained in the pharynx). In the current study, we utilized 
accelerometry features from the time and frequency do-
mains to capture mechano-acoustic properties of pharyn-
geal swallowing. Classification accuracy may be further 
improved by incorporating sensor features from other 
physiologically relevant modalities (i.e., audio data) [19]. 
We have also introduced respiratory features, computed 
from similar accelerometry approaches, to characterize 
respiratory-swallow coordination.

Research and development of automated diagnostic 
tools is a major focus of the digital health revolution; 

however, such tools are rarely implemented in clinical 
settings. There may be concerns about overreliance on 
imperfect automated tools, especially for tasks requiring 
a high cognitive load [33], or failed uptake stemming 
from a fundamental mistrust of any imperfections. Sen-
sor signals may be discriminative for detecting impaired 
swallowing, but the data itself is difficult to interpret and 
transform into actionable insights. Thus, the clinical util-
ity of these models depends on their ability to deliver in-
terpretable information that neither overwhelms nor 
oversimplifies. To this end, we presented the Severity 
Probability Model, which classifies swallowing impair-
ment while providing transparent estimates of model 
confidence and visual confirmation of clinically relevant 
sensor measures. Such a model could verify or supple-
ment subjective judgment of per-swallow impairments 
and empower clinicians to resolve potential ambiguities 
from the automated model predictions. With more train-
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ing data and per-swallow ground truth labels, these ap-
proaches could be extended to additional severity levels 
or adapted for alternative classification schemes, such as 
levels of swallowing safety or efficiency.

In contrast to the traditional classification-based ap-
proach, we also presented the Distance Model, which 
transforms a broad set of sensor features into a novel met-
ric of swallowing performance relative to nondysphagic 
controls. This approach quantifies relative differences in 
individual swallows, is sensitive to task-specific changes 
over time, and lends itself to an intuitive visual tool for 
continuous monitoring. Significant or concerning chang-
es toward or away from target performance may trigger 
additional in-depth clinical evaluation to pinpoint the 
physiological and anatomical mechanisms underlying 
such changes. Group-level statistics showed a significant 
effect of task on distance values, with poststroke puree 
boluses farther from the control boundary relative to nat-
ural sip and saliva tasks. Although thicker consistency bo-
luses (soft/hard solids) may be expected to show signifi-
cant differences from healthy swallowing, fewer patient 
swallows were available for analysis in these tasks com-
pared to the puree (Table 1) due to physician-prescribed 
diet limitations. There was no effect of session on distance 
values; this is not altogether surprising given the potential 
confounds for this small cohort, which may include true 
functional declines, day-to-day swallow variability, and 
promotion to more challenging diets.

The primary limitation of this study is the small sam-
ple size available for model training. Expanding the data-
set to include more participants, swallows per bolus, and 
swallows per severity level is critical to reliably report the 
model performance and generalizability. Second, al-
though the MASA is a frequently used clinical tool for 
screening and monitoring poststroke dysphagia, its lim-
ited sensitivity and specificity for identifying swallowing 
abnormality (73% and 89%, respectively [20]) and single 
score format may not accurately reflect impairment 
across multiple swallows. Swallowing is inherently vari-
able, and previous work has found that individuals with 
dysphagia do not exhibit unsafe swallowing consistently 
[17, 34]. As such, training models on a single MASA score 
limits our ability to effectively validate individual swallow 
classifications using traditional model performance met-
rics at this stage. Future studies should pair sensor data 
with validated per-swallow impairment measures (i.e., 
videofluoroscopy [17, 35]) to better evaluate model per-
formance. Finally, this dataset was not age-balanced for 
the explored cohorts and therefore does not account for 
age-related swallowing changes (i.e., increased apnea du-

ration or altered inhalation-exhalation patterns) [6]. It is 
unclear how skin laxity and adipose tissue at the supra-
sternal notch, which often accompany age, specifically af-
fect mechano-acoustic signal properties during swallow-
ing. While this study intended to demonstrate method-
ological feasibility rather than to optimize model 
performance, it is imperative that future work incorpo-
rates training data from age-matched healthy controls to 
differentiate the effect of oropharyngeal dysphagia on 
sensor signals from typical swallowing changes that occur 
with age.

Development of interpretable, user-friendly tools is 
critical to optimize the clinical utility of novel, sensor-
based measurement techniques. Additional, large-scale 
training data and real-world validation is required to re-
fine the algorithms and maximize their accuracy and per-
formance. Future work will expand the training dataset 
with ground truth impairment for each swallow, validate 
model performance using clinic and community sensor 
data, and assess the clinical utility of these models in dys-
phagia detection and treatment.
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